Quiz 5 Solutions

1. Use Stokes' Theorem to evaluate $\int_C F \cdot dr$, where $F(x, y, z) = x^2 y i + \frac{x^3}{3}j + xy k$ and C is the curve of intersection of $z = y^2 - x^2$ and $x^2 + y^2 = 1$ oriented counterclockwise as viewed from above.

Solution. Let S be part of the hyperbolic paraboloid $z = y^2 - x^2$ that lies above the unit disk D centered at origin. Clearly, S is a smooth surface and C is a smooth curve. Also, all the components of F are polynomials in x and y, which have continuous first partials everywhere in \mathbb{R}^3 . Therefore, the hypothesis of Stokes' Theorem are satisfied.

By a simple calculation, we have that $\nabla \times F = xi - yj$ and the unit normal to the surface is $n = \frac{2xi - 2yj + k}{\sqrt{4x^2 + 4y^2 + 1}}$. By Stokes' Theorem, we have that

$$\int_C F \cdot dr = \iint_S (\nabla \times F) \cdot n \, d\sigma$$

=
$$\iint_D (\nabla \times F) \cdot n \, \sqrt{f_x^2 + f_y^2 + 1} \, dA$$

(Here $z = f(x, y) = y^2 - x^2$)
=
$$2 \iint_D (x^2 + y^2) \, dA$$

=
$$4 \int_0^{2\pi} \int_0^r r^3 \, dr \, d\theta$$

= π .

2. Verify the Gauss' Divergence Theorem for the vector field F(x, y, z) = xy i + yz j + zx k on the region $E: x^2 + y^2 \le 1, 0 \le z \le 1$.

Solution. As in Problem 1, here too the components of F are polynomials, and hence have continuous first partials throughout \mathbb{R}^3 . Furthermore, ∂E comprises three components: the two disks $S_1 : x^2 + y^2 = 1, z = 1, S_2 : x^2 + y^2 = 1, z = 0$, and the lateral surface $S_3 : x^2 + y^2 = 1, 0 \leq z \leq 1$. Since ∂E is a piecewise smooth surface, the hypotheses of Gauss' Divergence Theorem are satisfied. Therefore, by the Gauss' Divergence Theorem, we have that

$$\int_{\partial E} F \cdot n \, d\sigma = \iint_E (\nabla \cdot F) \, dV,$$

which needs to be verified.

By a simple calculation, we can see that $\nabla \cdot F = x + y + z$. Hence, we have that

$$\iiint_E (\nabla \cdot F) \, dV = \iiint_E (x+y+z) \, dV$$
$$= \int_0^{2\pi} \int_0^1 \int_0^1 (r\cos\theta + r\sin\theta + z) \, r \, dz \, dr \, d\theta$$
$$= \pi/2.$$

Since $\partial E = S_1 \sqcup S_2 \sqcup S_3$, we have that

$$\iint_{\partial E} F \cdot n \, d\sigma = \iint_{S_1} F \cdot n \, d\sigma + \iint_{S_2} F \cdot n \, d\sigma + \iint_{S_3} F \cdot n \, d\sigma.$$

It is easy to see that n = k and n = -k for S_1 and S_2 , respectively. So

$$\iint_{S_1} F \cdot n \, d\sigma = \iint_{S_1} F \cdot k \, d\sigma$$
$$= \iint_{S_1} x \, d\sigma$$
$$= \int_0^{2\pi} \int_0^1 (r \cos \theta) \, r \, dr \, d\theta$$
$$= 0.$$

In a similar fashion, we can conclude that $\iint_{S_2} F \cdot n \, d\sigma = 0$.

On S_3 , $n = \frac{2xi+2yj}{4x^2+y^2} = xi+yj$, and we can parametrize S_3 by $R(r, \theta, z) = \cos \theta i + \sin \theta j + zk$, $r \in [0, 1]$ and $\theta \in [0, 2\pi]$. Hence, we have that

$$\iint_{S_3} F \cdot n \, d\sigma = \iint_{S_3} (x^2 y + y^2 z) \, d\sigma$$
$$= \int_0^{2\pi} \int_0^1 (\cos^2 \theta \sin \theta + z \sin^2 \theta) |R_\theta \times R_z| \, dz \, d\theta$$
$$= \pi/2.$$

We conclude from these calculations that

$$\int_{\partial E} F \cdot n \, d\sigma = \iint_E (\nabla \cdot F) \, dV,$$

which verifies the Gauss' Divergence Theorem.

3. Solve the differential equation

$$(y^2 - 3xy - 2x^2) dx + (xy - x^2) dy = 0.$$

Solution. Since $P_y = 2y - 3x$ is not equal to $Q_x = y - 2x$, so we have that the equation is not exact. To find the integrating factor, we use the form

$$F(x) = \frac{P_y - Q_x}{Q} = \frac{y - x}{x(y - x)} = \frac{1}{x}$$
, if $y \neq x$.

Therefore, the integrating factor is

$$h(x) = e^{\int F(x) \, dx} = x.$$

Multiplying the equation by this factor, we obtain the exact equation

$$(xy^{2} - 3x^{2}y - 2x^{3}) dx + (x^{2}y - x^{3}) dy = 0.$$

A solution to this equation is given by

$$f(x,y) = \int_0^x P(x,y) \, dx + \int_0^y Q(0,y) \, dy = c,$$

by taking $(x_0, y_0) = (0, 0)$, where both P and Q are defined. Therefore, we have that $\frac{x^2y^2}{2} - x^3y - \frac{x^4}{2} = c$ is a solution.