
Quiz 5 Solutions

1. Use Stokes’ Theorem to evaluate
∫
C
F · dr, where F (x, y, z) = x2y i +

x3

3
j + xy k and C is the curve of intersection of z = y2 − x2 and

x2 + y2 = 1 oriented counterclockwise as viewed from above.

Solution. Let S be part of the hyperbolic paraboloid z = y2−x2 that
lies above the unit disk D centered at origin. Clearly, S is a smooth
surface and C is a smooth curve. Also, all the components of F are
polynomials in x and y, which have continuous first partials everywhere
in R3. Therefore, the hypothesis of Stokes’ Theorem are satisfied.

By a simple calculation, we have that ∇ × F = xi − yj and the unit
normal to the surface is n = 2xi−2yj+k√

4x2+4y2+1
. By Stokes’ Theorem, we have

that ∫
C

F · dr =

∫∫
S

(∇× F ) · n dσ

=

∫∫
D

(∇× F ) · n
√
f 2
x + f 2

y + 1 dA

(Here z = f(x, y) = y2 − x2)

= 2

∫∫
D

(x2 + y2) dA

= 4

∫ 2π

0

∫ r

0

r3 dr dθ

= π.

2. Verify the Gauss’ Divergence Theorem for the vector field
F (x, y, z) = xy i+yz j+ zx k on the region E : x2 +y2 ≤ 1, 0 ≤ z ≤ 1.

Solution. As in Problem 1, here too the components of F are poly-
nomials, and hence have continuous first partials throughout R3. Fur-
thermore, ∂E comprises three components: the two disks S1 : x2+y2 =
1, z = 1, S2 : x2 + y2 = 1, z = 0, and the lateral surface S3 : x2 + y2 =
1, 0 ≤ z ≤ 1. Since ∂E is a piecewise smooth surface, the hypotheses
of Gauss’ Divergence Theorem are satisfied. Therefore, by the Gauss’
Divergence Theorem, we have that∫

∂E

F · n dσ =

∫∫
E

(∇ · F ) dV,
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which needs to be verified.

By a simple calcuilation, we can see that ∇ ·F = x+ y+ z. Hence, we
have that∫∫∫

E

(∇ · F ) dV =

∫∫∫
E

(x+ y + z) dV

=

∫ 2π

0

∫ 1

0

∫ 1

0

(r cos θ + r sin θ + z) r dz dr dθ

= π/2.

Since ∂E = S1 t S2 t S3, we have that∫∫
∂E

F · n dσ =

∫∫
S1

F · n dσ +

∫∫
S2

F · n dσ +

∫∫
S3

F · n dσ.

It is easy to see that n = k and n = −k for S1 and S2, respectively. So∫∫
S1

F · n dσ =

∫∫
S1

F · k dσ

=

∫∫
S1

x dσ

=

∫ 2π

0

∫ 1

0

(r cos θ) r dr dθ

= 0.

In a similar fashion, we can conclude that
∫∫

S2
F · n dσ = 0.

On S3, n = 2xi+2yj
4x2+y2

= xi+yj, and we can parametrize S3 by R(r, θ, z) =

cos θi+ sin θj + zk, r ∈ [0, 1] and θ ∈ [0, 2π]. Hence, we have that∫∫
S3

F · n dσ =

∫∫
S3

(x2y + y2z) dσ

=

∫ 2π

0

∫ 1

0

(cos2 θ sin θ + z sin2 θ)|Rθ ×Rz| dz dθ

= π/2.

We conclude from these calculations that∫
∂E

F · n dσ =

∫∫
E

(∇ · F ) dV,

which verifies the Gauss’ Divergence Theorem.
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3. Solve the differential equation

(y2 − 3xy − 2x2) dx+ (xy − x2) dy = 0.

Solution. Since Py = 2y− 3x is not equal to Qx = y− 2x, so we have
that the equation is not exact. To find the integrating factor, we use
the form

F (x) =
Py −Qx

Q
=

y − x
x(y − x)

=
1

x
, if y 6= x.

Therefore, the integrating factor is

h(x) = e
∫
F (x) dx = x.

Multiplying the equation by this factor, we obtain the exact equation

(xy2 − 3x2y − 2x3) dx+ (x2y − x3) dy = 0.

A solution to this equation is given by

f(x, y) =

∫ x

0

P (x, y) dx+

∫ y

0

Q(0, y) dy = c,

by taking (x0, y0) = (0, 0), where both P and Q are defined. Therefore,

we have that x2y2

2
− x3y − x4

2
= c is a solution.
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