Quiz 5 Solutions

1. Use Stokes' Theorem to evaluate $\int_{C} F \cdot d r$, where $F(x, y, z)=x^{2} y i+$ $\frac{x^{3}}{3} j+x y k$ and C is the curve of intersection of $z=y^{2}-x^{2}$ and $x^{2}+y^{2}=1$ oriented counterclockwise as viewed from above.
Solution. Let S be part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies above the unit disk D centered at origin. Clearly, S is a smooth surface and C is a smooth curve. Also, all the components of F are polynomials in x and y, which have continuous first partials everywhere in \mathbb{R}^{3}. Therefore, the hypothesis of Stokes' Theorem are satisfied.

By a simple calculation, we have that $\nabla \times F=x i-y j$ and the unit normal to the surface is $n=\frac{2 x i-2 y j+k}{\sqrt{4 x^{2}+4 y^{2}+1}}$. By Stokes' Theorem, we have that

$$
\begin{aligned}
\int_{C} F \cdot d r & =\iint_{S}(\nabla \times F) \cdot n d \sigma \\
& =\iint_{D}(\nabla \times F) \cdot n \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A \\
& \left(\text { Here } \mathrm{z}=f(x, y)=y^{2}-x^{2}\right) \\
& =2 \iint_{D}\left(x^{2}+y^{2}\right) d A \\
& =4 \int_{0}^{2 \pi} \int_{0}^{r} r^{3} d r d \theta \\
& =\pi .
\end{aligned}
$$

2. Verify the Gauss' Divergence Theorem for the vector field
$F(x, y, z)=x y i+y z j+z x k$ on the region $E: x^{2}+y^{2} \leq 1,0 \leq z \leq 1$.
Solution. As in Problem 1, here too the components of F are polynomials, and hence have continuous first partials throughout \mathbb{R}^{3}. Furthermore, ∂E comprises three components: the two disks $S_{1}: x^{2}+y^{2}=$ $1, z=1, S_{2}: x^{2}+y^{2}=1, z=0$, and the lateral surface $S_{3}: x^{2}+y^{2}=$ $1,0 \leq z \leq 1$. Since ∂E is a piecewise smooth surface, the hypotheses of Gauss' Divergence Theorem are satisfied. Therefore, by the Gauss' Divergence Theorem, we have that

$$
\int_{\partial E} F \cdot n d \sigma=\iint_{E}(\nabla \cdot F) d V
$$

which needs to be verified.
By a simple calcuilation, we can see that $\nabla \cdot F=x+y+z$. Hence, we have that

$$
\begin{aligned}
\iiint_{E}(\nabla \cdot F) d V & =\iiint_{E}(x+y+z) d V \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1}(r \cos \theta+r \sin \theta+z) r d z d r d \theta \\
& =\pi / 2
\end{aligned}
$$

Since $\partial E=S_{1} \sqcup S_{2} \sqcup S_{3}$, we have that

$$
\iint_{\partial E} F \cdot n d \sigma=\iint_{S_{1}} F \cdot n d \sigma+\iint_{S_{2}} F \cdot n d \sigma+\iint_{S_{3}} F \cdot n d \sigma .
$$

It is easy to see that $n=k$ and $n=-k$ for S_{1} and S_{2}, respectively. So

$$
\begin{aligned}
\iint_{S_{1}} F \cdot n d \sigma & =\iint_{S_{1}} F \cdot k d \sigma \\
& =\iint_{S_{1}} x d \sigma \\
& =\int_{0}^{2 \pi} \int_{0}^{1}(r \cos \theta) r d r d \theta \\
& =0
\end{aligned}
$$

In a similar fashion, we can conclude that $\iint_{S_{2}} F \cdot n d \sigma=0$.
On $S_{3}, n=\frac{2 x i+2 y j}{4 x^{2}+y^{2}}=x i+y j$, and we can parametrize S_{3} by $R(r, \theta, z)=$ $\cos \theta i+\sin \theta j+z k, r \in[0,1]$ and $\theta \in[0,2 \pi]$. Hence, we have that

$$
\begin{aligned}
\iint_{S_{3}} F \cdot n d \sigma & =\iint_{S_{3}}\left(x^{2} y+y^{2} z\right) d \sigma \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(\cos ^{2} \theta \sin \theta+z \sin ^{2} \theta\right)\left|R_{\theta} \times R_{z}\right| d z d \theta \\
& =\pi / 2
\end{aligned}
$$

We conclude from these calculations that

$$
\int_{\partial E} F \cdot n d \sigma=\iint_{E}(\nabla \cdot F) d V
$$

which verifies the Gauss' Divergence Theorem.
3. Solve the differential equation

$$
\left(y^{2}-3 x y-2 x^{2}\right) d x+\left(x y-x^{2}\right) d y=0
$$

Solution. Since $P_{y}=2 y-3 x$ is not equal to $Q_{x}=y-2 x$, so we have that the equation is not exact. To find the integrating factor, we use the form

$$
F(x)=\frac{P_{y}-Q_{x}}{Q}=\frac{y-x}{x(y-x)}=\frac{1}{x}, \text { if } y \neq x .
$$

Therefore, the integrating factor is

$$
h(x)=e^{\int F(x) d x}=x
$$

Multiplying the equation by this factor, we obtain the exact equation

$$
\left(x y^{2}-3 x^{2} y-2 x^{3}\right) d x+\left(x^{2} y-x^{3}\right) d y=0 .
$$

A solution to this equation is given by

$$
f(x, y)=\int_{0}^{x} P(x, y) d x+\int_{0}^{y} Q(0, y) d y=c
$$

by taking $\left(x_{0}, y_{0}\right)=(0,0)$, where both P and Q are defined. Therefore, we have that $\frac{x^{2} y^{2}}{2}-x^{3} y-\frac{x^{4}}{2}=c$ is a solution.

